
Self-Referential Structs in
Rust

Pete LeVasseur
Eclipse uProtocol

Maintainer

February 2025

background

What’s a self-referential struct in Rust?

Rust Programming Language Users Forum: It’s everyone’s favorite recurring topic: self-referential structs
https://users.rust-lang.org/t/its-everyones-favorite-recurring-topic-self-referential-structs/91105

Attempting to store something in a struct that references
something else in the same struct

The C or C++ equivalent of the above code would compile
and be usable. Why’s Rust different?

https://users.rust-lang.org/t/its-everyones-favorite-recurring-topic-self-referential-structs/91105

Aliasing: Why self-referential structs are hard in Rust

References:
[1] Rust’s Unsafe Coding Guidelines: Glossary https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#aliasing
[2] Rust Programming Language Users Forum: It’s everyone’s favorite recurring topic: self-referential structs
https://users.rust-lang.org/t/its-everyones-favorite-recurring-topic-self-referential-structs/91105/3

“Aliasing occurs when one pointer or reference points to a "span" of
memory that overlaps with the span of another pointer or
reference. A span of memory is similar to how a slice works: there's
a base byte address as well as a length in bytes.” [1]

“…to emphasize, one you didn't list here and the main one in
general is that aliasing something covered by a &mut (or owned
by a Box) is UB. That rule is at the heart of Rust's memory and
concurrency guarantees.

Alternatively put, once you "use" something, any exclusive
references to it must no longer be valid.” [2]

https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#aliasing
https://users.rust-lang.org/t/its-everyones-favorite-recurring-topic-self-referential-structs/91105/3

motivation

Occurrence in the wild: mcap crate
We want to:

1. use the memmap crate to memory map in an .mcap file to a Mmap
2. use the MessageStream struct from the mcap crate to take a reference to

that Mmap
3. so that we can keep the Mmap alive long enough for the duration that

MessageStream is alive

Note: All code snippets in this presentation are sample code to explain concepts!

Trying to use the MemmapMessageStream

ouroboros

ouroboros, designed for self-referential structs
struct using ouroboros self_referencing attribute macro

:[borrows(mmap)] informs that
this struct member will borrow
mmap

‘this: the 'this lifetime is created by
the :[self_referencing] macro and
should be used on all references marked
by the :[borrows] macro

:[not_covariant]: covariance
is a bit out of scope, but this says
that the ‘this lifetime cannot
be shortened

ouroboros, designed for self-referential structs
impl using ouroboros

MemmapMessageStreamBuilder
created by
:[self_referencing] which
allows us to pass in a closure
accepting the Mmap

The with_message_stream_mut
function created allows us
mutable access to the
MessageStream

macro

ouroboros, designed for self-referential structs
Expanded struct cargo rustc :- -Zunpretty=expanded

ouroboros, designed for self-referential structs
Expanded MemmapMessageStreamBuilder

message_stream_builder is an FnOnce, a
closure which accepts a Mmap with lifetime ‘this
and returns a MessageStream of lifetime ‘this

ouroboros, designed for self-referential structs
Expanded MemmapMessageStream::new()

ouroboros, designed for self-referential structs
aliasable_boxed()

crates.io: aliasable https://crates.io/crates/aliasable

https://crates.io/crates/aliasable

ouroboros, designed for self-referential structs
change_lifetime()

crates.io: aliasable https://crates.io/crates/aliasable

https://crates.io/crates/aliasable

ouroboros, designed for self-referential structs
Drop impl

Rust stdlib documentation: MaybeUninit
https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init_drop

The MaybeUninit held inside of MemmapMessageStream is
dropped by the Drop impl, ensuring that we deallocate the
mmap_illegal_static_reference

https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init_drop

ouroboros, designed for self-referential structs
with_message_stream_mut()

Allows us to pass in an FnOnce to be able to do
mutable operations on the MessageStream

Rust stdlib documentation: MaybeUninit
https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init_drop

https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init_drop

run it

Reading an MCAP file using MemmapMessageStream
$ cargo run :-bin mmap_backed

 Compiling memmap-message-stream-works v0.1.0
(/home/peter/presentations/self-referential-structs/memmap-message-stre
am-works)

 Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.89s

 Running `target/debug/mmap_backed`

next: Ok(Message { channel: Channel { id: 0, topic: "ping", schema:
Some(Schema { name: "Buffer", encoding: "", :. }), message_encoding:
"", metadata: {} }, sequence: 0, log_time: 1736458452082329110,
publish_time: 1736458452065969963, data: [0, 1, 0, 0, 4, 0, 0, 0, 32,
0, 0, 0] })

Takeaway: the self-referential strategy to keep the Mmap alive worked!

efficiency

ouroboros, designed for self-referential structs
Use cargo-show-asm on with_message_stream_mut()

crates.io: cargo plugin - cargo-show-asm https://crates.io/crates/cargo-show-asm

Want to ensure that
MemmapMessageStream::next()
compiles away the closure

Looks like in the generated assembly we
directly call Iterator::next() as
implemented on MessageStream. Great!

https://crates.io/crates/cargo-show-asm

safety

Any undefined behavior (UB) using ouroboros?

The Rust Programming Language: Unsafe Rust https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

Generally the Rust compiler takes responsibility for ensuring certain safe properties
of code, e.g. memory-safety which could lead to undefined behavior (UB)
As we saw, in order to accomplish self-referential structs, ouroboros uses unsafe
in key locations where the compiler may be too conservative and would have
caused a compilation error.

“Unsafe Rust exists because, by nature, static analysis is
conservative. When the compiler tries to determine whether
or not code upholds the guarantees, it’s better for it to reject
some valid programs than to accept some invalid programs.”

Key point: ”unsafe” moves the responsibility for checking safe properties of code from
compiler to the engineer, e.g. memory-safety. Code marked as unsafe deserves more
attention during design and code review.

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

Running miri to check for Undefined Behavior (UB)
File-backed memory mappings unsupported

$MIRIFLAGS=-Zmiri-disable-isolation cargo miri run :-bin mmap_backed

Running miri to check for Undefined Behavior (UB)
Use a Vec-backed approximation

$cargo miri run :-bin vec_backed

Running miri to check for Undefined Behavior (UB)
Just check the ouroboros tests!

GitHub: ouroboros crate source
https://github.com/someguynamedjosh/ouroboros/blob/7316c75b988ce97140c824837253161bc411eb22/examples/src/ok_tests.rs

No exact test for this scenario, hmmm

https://github.com/someguynamedjosh/ouroboros/blob/7316c75b988ce97140c824837253161bc411eb22/examples/src/ok_tests.rs

Running miri to check for Undefined Behavior (UB)
Write a test for ouroboros then! - test setup

Running miri to check for Undefined Behavior (UB)
Write a test for ouroboros then! - test

$ cargo miri test :-features="miri"
…
test ok_tests::custom_ref ::. ok

Running miri to check for Undefined Behavior (UB)
Write a test for ouroboros then! - merged upstream

Test merged upstream:
https://github.com/someguynamedjosh/ouroboros/pull/130

https://github.com/someguynamedjosh/ouroboros/pull/130

std::pin::Pin

Question: Can we use std::pin::Pin instead?
Yes! Here’s the code

We use PhantomPinned to ensure
that this struct’s contents cannot be
moved in memory
Using std::mem::transmute here to
extend the lifetime of mmap. As the
stdlib docs note:
“This is advanced, very unsafe Rust!”

Question: Can we use std::pin::Pin instead?
Miri passes without finding anything unsound

$cargo miri run :-bin vec_backed

Question: Can we use std::pin::Pin instead?
Are there differences in generated assembly of next()?

Using ouroboros

Using Pin

No! They are identical

lessons

When does it make sense to use each?
Generally ouroboros has less sharp edges, recommended

Pros Cons

Built into the standard
library

Requires unsafe code
to implement correctly

Well-documented and
understood (used heavily
in async/await)

Easy to make mistakes
with the unsafe code
that could lead to
undefined behavior

More flexible if we need
to do unsafe (somewhat
of a con too) or have
specific memory layout
requirements

More verbose
implementation &
have to work with
Pin’s API which can be
awkward

Using std::pin::Pin Using ouroboros

Pros Cons

No unsafe code needed
in implementation &
ouroboros handles all the
unsafe details

Additional dependency

More ergonomic API for
common use cases

Procedural macros can
make compilation
slower

Less boilerplate code
required

Less flexible for
unusual cases

*Refer to slide 24 for definition of unsafe and further details

Thinking about ouroboros vs std::pin::Pin
Rust expertise

Begin

Are you fairly
comfortable
with using
unsafe?

Use ouroboros

Potentially use
std::pin::Pin

No

Yes

Thinking about ouroboros vs std::pin::Pin
Performance

Begin

Does perf
matter?

Use ouroboros

Implement in
ouroboros

Closure of
with_foo() and
with_foo_mut()

compiled out?

Use
std::pin::Pin

No

Yes

Yes

No

 Thank You!

JOIN US ON GITHUB!
Eclipse uProtocol GitHub Project:

https://github.com/eclipse-uprotocol
Eclipse SDV Blueprint: Service-to-Signal:

https://github.com/eclipse-sdv-blueprints/service-to-signal
Eclipse uProtocol Website:
https://uprotocol.org/

https://github.com/eclipse-uprotocol
https://github.com/eclipse-sdv-blueprints/service-to-signal
https://uprotocol.org/

